Rules of angles (7–9)

Contents

1	basic rules of angles	1							
2	Angles in parallel lines (7–9)								
3	Angles in polygons (year 9)								
	3.1 The central angle in a regular polygon	4							
	3.2 The exterior angle of any polygon	5							
	3.3 The interior angle of any polygon	5							

1 basic rules of angles

There are various *Rules of angles* that you should know. These can be used in any geometrical diagram to work out missing angles without the diagram having to be drawn to scale. We do not need a protractor since the rule will give us the exact answer. The basic rules you should know are:

Angles on a straight line add to 180°

Vertically opposite angles are equal

Note: this is not like angles at a point since here we are dealing with where two straight lines intersect, like a pair of scissors:

Angles in a triangle add to 180°

a + 47 + 52 = 180 Angles in a triangle a + 99 = 180 $a = 81^{\circ}$

Angles in a quadrilateral add to 360°

Notice how, in each case, we set out our working clearly using a logical algebraic layout and we always give the reason for a particular angle.

Example. Find x and y in the following diagram:

$$y = 85^{\circ}$$
 Vertically opposite angles

2 Angles in parallel lines (7–9)

When a line passes through a pair of parallel lines, this line is called a transversal:

A transversal creates three letters of the alphabet which hide 3 new rules of angles:

Angles in quadrilaterals

We have already seen that the angles in any quadrilateral add up to 360° . There is an interesting special case that allows us to use what we have just learned about angles in parallel lines:

In a parallelogram, angles next to each other make a "C" shape (interior angles). This means that they add up to 180° . Therefore,

In a parallelogram, opposite angles are equal.

3 Angles in polygons (year 9)

- A *polygon* is a shape with straight sides.
- A *regular polygon* has all sides and all angles equal.

We may need to find several angles in polygons.

3.1 The central angle in a regular polygon

The angles sit around a circle and so add to 360° . Each angle is $360 \div n$, where *n* is the number of sides of the polygon.

E.g. here we have a hexagon:

Each angle is $360 \div 6 = 60^{\circ}$

3.2 The exterior angle of any polygon

In any polygon, the exterior angles are found where the extension of a side meets the next side, as the diagram shows. Since these extensions all form a "windmill" effect, their total turn is equivalent to a full circle.

Sum of exterior angles $= 360^{\circ}$

Example. What is the exterior angle of a regular pentagon?

Each angle is equal as the pentagon is regular. Therefore,

Each angle =
$$360 \div 5$$

= 72°

3.3 The interior angle of any polygon

We know that:

- in a triangle, interior angles add to 180°;
- in a quadrilateral, interior angles add to 360°.

If we follow the pattern, we notice that the total goes up by 180° each time.

But why is this? If we take one vertex of any polygon and join it to all of the others, we create triangles:

Notice also that the number of triangles needed is always two less than the number of sides in the polygon. So in general:

 $\begin{bmatrix} \text{Sum of} \\ \text{interior angles} \end{bmatrix} = 180(n-2), \text{ where } n \text{ is the number of sides}$

Moreover, if the polygon is regular, we can divide the sum by n to obtain the size of each interior angle. The following table sums these up for a few polygons:

Number of sides	n \mid	3	4	5	6	7	8	9	10
Number of triangles	n-2	1	2	3	4	5	6	7	8
Sum of angles	180(n-2)	180	360	540	720	900	1080	1260	1440
Each angle if regular	$\frac{180(n-2)}{n}$	60	90	108	120	128.57	135	140	144

Example. What is the missing angle below?

Example. What is the size of any interior angle in a regular dodecagon? (NB A dodecagon has 12 sides)

A 12 sided shape can be divided into 10 triangles.

Sum of interior angles
$$= 10 \times 180^{\circ}$$

 $= 1800^{\circ}$

Therefore

Each interior angle =
$$1800 \div 12$$

= 150°