Rules of angles (7-9)

Contents

1 basic rules of angles 1
2 Angles in parallel lines (7-9) 2
3 Angles in polygons (year 9) 4
3.1 The central angle in a regular polygon . 4
3.2 The exterior angle of any polygon . 5
3.3 The interior angle of any polygon . 5

1 basic rules of angles

There are various Rules of angles that you should know. These can be used in any geometrical diagram to work out missing angles without the diagram having to be drawn to scale. We do not need a protractor since the rule will give us the exact answer. The basic rules you should know are:

Angles on a straight line add to 180°

Angles at a point add to 360°

$$
\begin{aligned}
y+92+151 & =360 \quad \text { Angles at a point } \\
y+243 & =360 \\
y & =117^{\circ}
\end{aligned}
$$

Vertically opposite angles are equal

Note: this is not like angles at a point since here we are dealing with where two straight lines intersect, like a pair of scissors:

$$
z=63^{\circ} \quad \text { Vertically opposite angles }
$$

Angles in a triangle add to 180°

$$
\begin{aligned}
a+47+52 & =180 \quad \text { Angles in a triangle } \\
a+99 & =180 \\
a & =81^{\circ}
\end{aligned}
$$

Angles in a quadrilateral add to 360°

Notice how, in each case, we set out our working clearly using a logical algebraic layout and we always give the reason for a particular angle.

Example. Find x and y in the following diagram:

To find x :

$$
\begin{aligned}
x+75 & =180 \quad \text { Angles on a straight line } \\
x & =105^{\circ}
\end{aligned}
$$

To find y :

$$
y=85^{\circ} \quad \text { Vertically opposite angles }
$$

2 Angles in parallel lines (7-9)

When a line passes through a pair of parallel lines, this line is called a transversal:

A transversal creates three letters of the alphabet which hide 3 new rules of angles:

Alternate angles
are equal
(Z-angles)

Corresponding angles are equal (F-angles)

Interior angles
add to 180°
(C-angles)

Have a look at these examples:

$$
c=70^{\circ} \quad \text { Alternate angles }
$$

$$
\begin{aligned}
d+75 & =180 \quad \text { Interior angles } \\
d & =105^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& e=72^{\circ} \quad \text { Corresponding angles } \\
& d=105^{\circ}
\end{aligned}
$$

Note that the " F " is back to front!

$$
\begin{aligned}
m & =28^{\circ} \quad \text { Corresponding angles } \\
m+n & =180^{\circ} \quad \text { Angles on a straight line } \\
n & =152^{\circ}
\end{aligned}
$$

Angles in quadrilaterals

We have already seen that the angles in any quadrilateral add up to 360°. There is an interesting special case that allows us to use what we have just learned about angles in parallel lines:

In a parallelogram, angles next to each other make a "C"
 shape (interior angles). This means that they add up to 180°. Therefore,

In a parallelogram, opposite angles are equal.

3 Angles in polygons (year 9)

- A polygon is a shape with straight sides.
- A regular polygon has all sides and all angles equal.

We may need to find several angles in polygons.

3.1 The central angle in a regular polygon

The angles sit around a circle and so add to 360°. Each angle is $360 \div n$, where n is the number of sides of the polygon.
E.g. here we have a hexagon:

Each angle is $360 \div 6=60^{\circ}$

3.2 The exterior angle of any polygon

In any polygon, the exterior angles are found where the extension of a side meets the next side, as the diagram shows. Since these extensions all form a "windmill" effect, their total turn is equivalent to a full circle.

$$
\text { Sum of exterior angles }=360^{\circ}
$$

Example. What is the exterior angle of a regular pentagon?
Each angle is equal as the pentagon is regular. Therefore,

$$
\begin{aligned}
\text { Each angle } & =360 \div 5 \\
& =72^{\circ}
\end{aligned}
$$

3.3 The interior angle of any polygon

We know that:

- in a triangle, interior angles add to 180°;
- in a quadrilateral, interior angles add to 360°.

If we follow the pattern, we notice that the total goes up by 180° each time.
But why is this? If we take one vertex of any polygon and join it to all of the others, we create triangles:

Quadrilateral

Pentagon
2 triangles: $3 \times 180=540^{\circ}$

Hexagon
2 triangles: $4 \times 180=720^{\circ}$

Notice also that the number of triangles needed is always two less than the number of sides in the polygon. So in general:
$\left[\begin{array}{c}\text { Sum of } \\ \text { interior angles }\end{array}\right]=180(n-2)$, where n is the number of sides

Moreover, if the polygon is regular, we can divide the sum by n to obtain the size of each interior angle. The following table sums these up for a few polygons:

Number of sides	n	3	4	5	6	7	8	9	10
Number of triangles	$n-2$	1	2	3	4	5	6	7	8
Sum of angles	$180(n-2)$	180	360	540	720	900	1080	1260	1440
Each angle if regular	$\frac{180(n-2)}{n}$	60	90	108	120	128.57	135	140	144

Example. What is the missing angle below?

In a pentagon, the sum of the interior angles is 540°.

$$
\begin{aligned}
x+135+130+75+120 & =540 \\
x+460 & =540 \\
x & =80^{\circ}
\end{aligned}
$$

Example. What is the size of any interior angle in a regular dodecagon? (NB A dodecagon has 12 sides)

A 12 sided shape can be divided into 10 triangles.

$$
\begin{aligned}
\text { Sum of interior angles } & =10 \times 180^{\circ} \\
& =1800^{\circ}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\text { Each interior angle } & =1800 \div 12 \\
& =150^{\circ}
\end{aligned}
$$

